

Encoders • EdgeQAM/IP Solutions • Transcoders • HD Solutions • OEM

BTPRO-7000S HD Tablet/Touch Signal Analyzer

Model: BTPRO-7000 *Stock#:* 4231

BTPRO-7000S Benefits

Engineers and technicians can easily configure, calibrate, and test various types of analog TV, or radio signals in the lab or out in the field

- □ Tablet-size design yields a compact, lightweight, portable test instrument (10″x6″x2″)
- □ 7-inch color, touch-screen user interface.
- Comprehensive signal-parameter measurement and display obviates the need for additional test gear.
- □ Auto discovery allows for quick, automatic set-up.

Measurements:

 MER, PER, LDPC, BCH, aBER, bBER, EVM, noise margin, level/power, real time spectrum analyzer and constellation display

CATV Measurements:

- □ INGRESS mode, LEAKAGE mode, BAR SCAN, TILT,
 - $\hfill\square$ and is available with DOCSIS option.

BTPRO-7000S Features

- □ TV and CATV tuner, extended band, 4-1000 MHz
- □ Satellite tuner, extended band, 930-2250 MHz (optional)
- □ Spectrum in real time, fast and super-fast with memory peak
- □ Detects, measures and displays video of MPEG 2/4 and H.264 HD programs
- All measurements, program lists, A/V PIDs, NET ID, virtual channel number, settings and pictures on one screen
- □ Automatic quality analysis: FAIL-MARG-PASS
- □ Auto memory, Manual memory and Datalogger functions
- Help function automatically identifies all the signals with digital modulation SAT, TV and CATV
- □ Bar scan TV and CATV function from 10 to 100 channels on one screen
- □ Audio decoding of AAC and AC3
- Battery test function, to regenerate and measure the batteries and calibrate the battery indicator
- □ Pre-memorized SAT transponder navigation
- □ Assisted satellite dish pointing

BTPRO 7000S

- □ Home Screen
- □ Allows the user to access any of the units Modes/Functions
 - □ The user can either touch the screen or use the Navigation Wheel or keypad to switch between screen selections.

TV Main measurement screen

- The following information is displayed in both Numerical and Bar graph.
 - Power (Signal strength of channel under test)
 - □ MER (Modulation error rate)
 - □ NsMAR (Noise Margin)
 - bBER (Bit Error rate of incoming signal before correction)
 - aBER (Bit Error rate of incoming signal after correction)

- □ Additional information the appears on the screen is
 - □ Live video of channel/program under test
 - Program information
 - □ Virtual (PISP) channel data
 - Network information
 - PID data
 - Symbole Rate
 - Encryption
 - □ Indicates if Programs are Clear or encrypted.

Channel selection

□ Channels can be accessed in one of two ways

- One way is to high light the channel selection on the main screen and turn the Navigation wheel to change the channels
- Or hold down the Navigation wheel for 2 seconds and a channel selection dropdown will appear. Simply select the channel and push the Navigation wheel to enter or touch the screen with your finger to select the channel.

PLAN	MODULAT	CONST	DC@RF	FREQ	CHAN
USABRO	VSB	8VSB	0FF	557.00	28
POWER: -2	. 9dBmV				WNBC
-30 -13	0 15 30	45 69			11120
MER:>36dB					
8 12 16	20 24 28 3	2 36 40			
NsMAR:15.3d	B	QLY: PASS			
-1 3	7 11 15	19 23			
bBER: <10-9)				WNBC
-2 -3 -	4 -5 -6	-7 -8	VPID:	49 APID:52	PMT: 48
aBER: <10-9		ERR:000	ANNEX	1	8VSB
-2 -3 -	4 -5 -6	-7 -8	SYM.R/ Encryf	ATE: PT.:	5.381MS/s Clear
NTD:	4-1 NE	TW: WNI	BC		MENU & 7 🔼

PLAN	MODULAT	CONST	DC	@RF		FRE	Q		C	HAN	
USABRO	VSB	8VSB	C)FF	5	57.	00			28	
POWER: -2.	9dBmV			-						ſ	
-30 -15	0 15 30	45 60	23	3	525	. 25	- b	IAS1	ΓER		
MER:>36dB			24	ļ	531	. 25	P	IAST	ΓER		
HERT SOUD			25	;	537	.25	P	IAST	ΓER		
8 12 16 .	20 24 28 3	2 <mark>236</mark> 48	26	5	543	. 25	P	IAS1	ΓER		
NsMAR:15.3d	В	QLY: PASS	27	7	549	.25	ß	IAST	ΓFR		
-1 3 3	7 11 15	19 23	28	2	555	25	N	1451	FR		
bBER: <10-9			20		561	25	, N	IACI	CED		
-2 -3 -4	4 -5 -6	-7 -8	23		201	. 25	- -	IAS I			
	<u> </u>	<u>, </u>	30]	567	. 25	ր	IAST	FER		
aBER: <10-9		ERR:000	31		573	. 25	P	IAST	ΓER		
-2 -3 -4	4 -5 -6	-7 -8	32	2	579	. 25	ľ	IAST	ΓER		
NID:	4-1 N	TW: WNI	1	2 3	4	5	6	7	8	9	0

□ Frequency selection

- Channels or carriers can also be accessed by tuning there Frequency, in one of two ways
 - One way is to high light the Frequency and turn the Navigation wheel to change the channels
 - Or hold down the Navigation wheel for 2 seconds and a channel selection dropdown will appear. Simply select the channel and push the Navigation wheel to enter or touch the screen with your finger to select the channel.

- Program/Channel information
 - □ If the RF channel contains more then one program the program information screen allows the user to select between programs.
 - □ This mode is accessible by clicking on the channel information box under the Video screen or clicking on the MPEG Service box on the Home page.
 - □ The following information is displayed on this page
 - □ List of available programs
 - □ Video Data rate
 - □ Service ID
 - $\hfill\square$ Along with other information that was displayed on the main measurement page.

- □ Full Screen Video Display
- This mode is accessible by clicking on the Video Box in the Main Measurement Screen
 - □ The following information is displayed on this page
 - □ Video encoding
 - □ Resolution
 - Screen size
 - $\hfill\square$ Audio Coding and Language

- Other parameters that can be accessed from the Main Measurement screen are.
 - DC@RF (Allows user to supply a DC voltage at the RF input to the meter)
 - CONST (Allows user to select between different constellation modes if available)
 - Menu (Display extra functions depending on what screen the user is in.

BTPRO 7000S Spectrum Screen

- Spectrum mode can be accessed by pressing the spectrum button on the front of the unit or navigating to the Home screen and highlighting the spectrum button there.
 - □ The spectrum display shows the following information.
 - Level
 - $\hfill\square$ Marker for both frequency and level
 - □ Adjustable spectrum width

□ Tuning of the marker can be done by channel or by frequency

BTPRO 7000S Spectrum Screen

- Other setting/screens that are available while in the spectrum mode are
 - □ The Help Menu
 - $\hfill\square$ Allows the user to change functions or viewing of the spectrum screen.
 - □ The help in the Help Menu will also look at a single channel and identify the correct unit parameters if different then what is being used.
 - □ The SPAN selection allows the user to change the screen span
 - Menu (Display extra functions depending on what screen the user is in.

BTPRO 7000S Barscane Screen

- The BarScan mode displays the carriers or RF channel as a single digital bar.
 - □ Gives digital representation of both the Digital QAM and Analog carriers.
 - $\hfill\square$ Allows the user to change functions or viewing of the screen.
 - □ The Help Menu is also available as well as some of the same functions that were available in the spectrum screen.

PLA	N	REF	·. PWF	१	MR	К.СН/	AN	MRK	. FR	dB/	′div
USAB	RO	6	dBm\	1		44		651	. 25	5	dB
θdΒ											-
-5dB					-						-
-10dB					1						-
-15dB		-							.		-
-20dB	-										-
-25dB					_						$\left\{ \begin{array}{c} \end{array} \right\}$
-30dB											
	MRK.	P: -7	. 5dBi	mV							MENU

BTPRO 7000S Barscane Screen

- Example of a Bar Scan graph on a custom channel plan with limited carriers..
 - Only the channels in the custom plans memory are displayed

BTPRO-7000S Constellation Screens

- □ The constellation screen can be accessed by pressing the TV button when in the measurement screen
 - □ The constellation below is for and 8 VSB signal

44

MENU & 7

The constellation can be looked as a full constellation or as quartiers to get a better view of the individual symbol blocks .

PLAN MODULAT CONST CHAN DC@RF FRE0 VSB 8VSB 0FF 653.00 btoffair Z00M: FULL INFO ANNEX 8VSB 5.381 SYM. RATE: LNB Curr: 0mA

NETW: WMBCDT

Constellation: Full

Constellation: Zoom

NID: 63-1

BTPRO-7000S Constellation Screens

- The constellation screen can be accessed by pressing the CATV button when in the measurement scree
 - □ The constellation below is for and Clear QAM 256 signal
 - The constellation can be looked as a full constellation or as quartiers to get a better view of the individual symbol blocks.

Constellation: Full

Constellation: Zoom

- The Memory function of the unit can be accessed from the Home screen
 - □ The Memory screen allows the user to:
 - □ Build his own unique channel line based on the system under test.
 - $\hfill\square$ By auto memory mode or by manual mode
 - $\hfill\square$ Save the readings associated with the system the user is working on.
 - □ Manage the stored flog files

MEMORY MENU	
AUTOMEMORY tv	
SAVE DATALOGGER	
RECALL DATALOGGER	
MANUMEMORY	
FILE MANAGER	
EXIT	
	MEMORY MENU

- Auto memory scan of existing off-air UHF feed
 - Select AUTOMEMORY tv. Set PLAN, LEVEL, POWER, DISCOVERY and start the scan.

MEMORY MENU	1		
AUTOMEMORY tv	\rightarrow	FROM PLAN:	USABRO
SAVE DATALOGGER		TO FILE N:	AUT010
RECALL DATALOGGER		LEVEL:	> -5 dBmV
MANUMEMORY		POWER:	> -15 dBm
FILE MANAGER		DISCOVERY:	TERR. ONLY
		DC@RF:	OFF
EXIT		START SAVE?	
	-	ВАСК	
	MEM	IORY MENU	

Scan in progress

Finished Scan

□ Auto memory scan of Cable feed

Select AUTOMEMORY tv. Set PLAN, LEVEL, POWER, DISCOVERY and start the scan.

Scan in progress

Finished Scan

BTPRO-7000S Datalogger

□ The Datalogger function is accessible from the Memory screen

- □ Select the Datalogger function and set the parameters
 - $\hfill\square$ Source file (channel plan) that should be used for the scan.
 - □ Location of data file
 - □ Start the scan
- □ The Data logger will go through all the channels in the selected channel plan one by one and log the readings into memory.

- As Datalogger steps through each channel it
 - Displays them as analog or digital
 - □ Highlights the total test report as a pass/fail
 - □ Logs the following information into a downloadable log file
 - Signal type
 - Power level
 - MER if digital
 - □ dBER if digital
 - □ aBER if digital
 - □ C/N if analog
 - □ A/V ratio if analo

Analog Ch	Total Test Report	L0G. 1	POINT 1			E	XIT
Digital Ch		NAME	ТҮРЕ	PWR LVL	MER C/N	bBER A/V	aBER PER
MADC		2	An TV	12.4	44.7	13.8	
		3	J83B	10.7	>40	2.0E-07	<e-09< th=""></e-09<>
FAIL		4	J83B	10.9	>40	<e-09< th=""><th><e-09< th=""></e-09<></th></e-09<>	<e-09< th=""></e-09<>
EVIT CTOD		5	J83B	10.7	>40	<e-09< th=""><th><e-09< th=""></e-09<></th></e-09<>	<e-09< th=""></e-09<>
EXII STOP		6	J83B	9.3	>40	<e-09< th=""><th><e-09< th=""></e-09<></th></e-09<>	<e-09< th=""></e-09<>
		95	J83B	9.6	>40	<e-09< th=""><th><e-09< th=""></e-09<></th></e-09<>	<e-09< th=""></e-09<>
PLAN: AUTO 1		96	J83B	9.0	>40	<e-09< th=""><th><e-09< th=""></e-09<></th></e-09<>	<e-09< th=""></e-09<>
CHAN:		97	J83B	8.2	>40	<e-09< th=""><th><e-09< th=""></e-09<></th></e-09<>	<e-09< th=""></e-09<>
		98	J83B	8.8	>40	<e-09< th=""><th><e-09< th=""></e-09<></th></e-09<>	<e-09< th=""></e-09<>
		99	J83B	8.7	>40	<e-09< th=""><th><e-09< th=""></e-09<></th></e-09<>	<e-09< th=""></e-09<>
122	COMPLETED	14	J83B	8.6	>40	<e-09< th=""><th><e-09< th=""></e-09<></th></e-09<>	<e-09< th=""></e-09<>
RECAL	L? EXIT						
				RECALL	DATALOG	GER	

BTPRO-7000S S.M.A.R.T Program

- The S.M.A.R.T. program allows the user access to all internal files
 - Channel Plan
 - Memory plans
 - Auto Scan plans
 - □ Logger Files
 - □ Spectrum Files
 - □ Threshold Files
- □ Channel Plan files contain all the channels plans in the unit
 - □ Example
 - □ USABRO USE Off-Air UHF/VHF channel frequency assignments
 - USACAB USE standard cable frequency assignments
 - USAHRC USE HRC (Harmonically related Carrier) cable frequency assignments
 - USAIRC USE IRC (Incrementally related Carrier) cable frequency assignments
 - Plus Russian, Australian, Polish, and others.

	and the second second		1.00	000
Eist Instrument View Tools Window Help Factory				
国家意義を受ける				
** INSTRUMENT FILE MANAGER ***				
Mon Norman Plan N Page Annah				
nd n Name Pan NPag Alexandron				
ndin alignmentation v Restricted MANAGER ************************************				
NGTRUMENT FLE MANAGER *** Ind in UNITED AND ALL MANAGER ** Ind in				
nd n Neme Page NPage Page NPage Page NPage Page Page Page Page Page Page Page				
Man Norman Plan N Page Plan N	81.0005	54 333	EW 112 0	000ECT CD48
NOSTRUMENT FILE MANAGER	81-7005	Ş94, 333	PW 212 (0	DIARECT COMB

BTPRO-7000S S.M.A.R.T Program

- □ The Datalogger files, store the following information about the system, the scan was ran on.
 - □ Logs the following information into a downloadable log file
 - □ Signal type (Analog or Digital and what Digital format)
 - □ Power level (analog and Digital channels)
 - □ MER if digital
 - □ dBER if digital (Pre Bit error)
 - □ aBER if digital (Post Bit error after correction)
 - □ C/N if analog
 - □ A/V ratio if analog

g	Mode	Ch	Freq.	Prg.Name	S.Rate	AU.FR CAR	Stand. or	Level	or Po	we C/N	MER	V/A	. bBE	aBER	PER	N.MA	QLTY		-1000EP Propert
	AN.TV.	2	55.25	2		4.500 FM		72.4dBuV		44.7dE		13.8dB					PASS		Name
	QAM	3	63.00	3	5.361 MS/s		QAM256	70.7dBuV		>40dB			2x	2x10-9		>12 dB	PASS		POINT 1
	QAM	4	69.00	4	5.361 MS/s		QAM256	70.9dBuV		>40dB			<	2x10-9		>12 dB	PASS		point
	QAM	5	79.00	5	5.361 MS/s		QAM256	70.7dBuV		>40dB			<	2x10-9		>12 dB	PASS	=	Plan:
	QAM	6	85.00	6	5.361 MS/s		QAM256	69.3dBuV		>40dB			<	2x10-9		>12 dB	PASS		1
	QAM	95	93.00	95	5.361 MS/s		QAM256	69.6dBuV		>40dB			<	2x10-9		>12 dB	PASS		Temperature:
	QAM	96	99.00	96	5.361 MS/s		QAM256	69.0dBuV		>40dB			<	2x10-9		>12 dB	PASS		36 °C
	QAM	97	105.00	97	5.361 MS/s		QAM256	68.2dBuV		>40dB			<	2x10-9		>12 dB	PASS		, Date:
	QAM	98	111.00	98	5.361 MS/s		QAM256	68.8dBuV		>40dB			<	2x10-9		>12 dB	PASS		
	QAM	99	117.00	99	5.361 MS/s		QAM256	68.7dBuV		>40dB			<	2x10-9		>12 dB	PASS		INUTAVAILABLE
	QAM	14	123.00	14	5.361 MS/s		QAM256	68.6dBuV		>40dB			<	2x10-9		>12 dB	PASS		Instrument S.N.:
	QAM	15	129.00	15	5.361 MS/s		QAM256	67.9dBuV		>40dB			<	2x10-9		>12 dB	PASS		333
	QAM	16	135.00	16	5.361 MS/s		QAM256	68.4dBuV		>40dB			<	2x10-9		>12 dB	PASS		Customer
	AN.TV.	17	139.25	17		4.500 FM		69.7dBuV		44.3dE		12.7dB					PASS		Customer.
	QAM	18	147.00	18	5.361 MS/s		QAM256	68.5dBuV		>40dB			<	2x10-9		>12 dB	PASS		1
	QAM	19	153.00	19	5.361 MS/s		QAM256	68.8dBuV		>40dB			<	2x10-9		>12 dB	PASS		Notes:
	QAM	20	159.00	20	5.361 MS/s		QAM256	69.6dBuV		>40dB			<	2x10-9		>12 dB	PASS		
	QAM	21	165.00	21	5.361 MS/s		QAM256	68.5dBuV		>40dB			<	2x10-9		>12 dB	PASS		,
	QAM	22	1/1.00	22	5.361 MS/s		QAM256	68.5dBuV		>40dB			<	2x10-9		>12 dB	PASS		
	QAM	07	1/7.00	0/	5.361 MS/s		QAM256	69.0dBuV		>40dB			<	2x10-9		>12 dB	PASS		Unit dBuV
	QAM	08	183.00	08	5.361 MS/s		QAM256	68.4dBuV		>40dB			<	2x10-9		>12 dB	PASS		
	QAM	09	189.00	09	5.361 MS/s		QAM256	68.2dBuV		>40dB			<	2x10-9		>12 dB	PASS		
	QAM	10	195.00	10	5.361 MS/s		QAM256	68.1dBuV		>40dB			<	2x10-9		>12 dB	PASS		
	QAM	12	201.00	11	5.301 MIS/S		QAM256	67.6dBuV		>40dB			<	2x10-9		>12 dB	PASS		
	QAM	12	207.00	12	5.301 MIS/S		QAM250	67.6dBuV		>40dB			<	2x10-9		>12 dB	PASS		
	QAM	13	213.00	13	5.301 MIS/S		QAM250	67.2 J D		>40dB			<	2x10-9		>12 dB	PASS		
	QAM	23	219.00	23	5.301 MS/S		QAM256	67.5 dBuV		>40dB			<	2x10-9		>12 dB	PASS		
	QAM	24	225.00	24	2-301 M2/2		QAM256	67.5dBuV		>40d8			<	2x10-9		>12 dB	PASS	Ψ.	
				INSTRUMENT FIL	E MANAGER	NRN													
Find	in 🔄 Loo	per	•	Name	Plan	N.Progr.	Refresh												
	,	-		POINT 1	1	117													
							Open												
File N	lame POINT	1				_	Instrument -> PC												
File ty	De lostom	oent File (*		4			Delete												
	in adam	ione no (.		•															

	ss F1	For Help, pr
	\bigcirc	@
	0	@

BTPRO-7000S S.M.A.R.T Program

□ Auto Scan plans capture in the units Memory.

	Mode	Ch	Freq.	[MHz]	Prg.Name	Local Osc [MHz]	S.Rate or CH.BW.	AU.FR CARR. INTERL	Lnb Pol SEGMENTS	· .	LOCOLD Durant
-	ANLTV.	2	55.25		2	and the second se	all a construction of the second s	4.500 FM		m	Name:
	QAM	3	63.00		3		5.361 MS/s			1 3	POINT 1
	QAM	4	69.00		4		5.361 MS/s			1	Day
	QAM	5	79.00		5		5.361 MS/s				1
	QAM	6	85.00		6		5.361 MS/s			1915	and the second second
	QuM	90	99.00		90		5.361 MS/s				Temperature
	QAM	20	99,00		90		5.361 M5/3				36 °C
-	QuM	34	102.00		41		5-304 M0/5				Date:
	OAM	00	117.00		00		5 DET LACA				NOT AVAILABLE
	OAM	14	173.00		14		5.361 MS/s				Instrument IL N
	QAM	15	129.00		15		5.361 MS/s				200
	QAM	16	135.00		16		5.361 MS/s				333
	ANLTY.	17	139.25		17			4.500 FM			Customer:
	QAM	18	147.00		18		5.361.MS/s				
	QAM	19	153.00		19		5.361 MS/s				Notes:
	QAM	20	159.00		20		5.361 MS/x				-
	QAM	21	165.00		21		5.361 M5/s				
	QAM	22	171.00		22		5.361 MS/s				
	QAM	07	177,00		07		5.361 MS/s				Unit dBull
	QAM	08	183.00		08		5.361 M5/s				
	QuM	09	189.00		09		5.361 MS/3				
	Quan	10	201.00		10		5.361 K40/s				
	OAM	12	207.00		12		5 361 885/4				
	OAM	13	213.00		13		5.361 8.65/a				
			m								
			- INSTRUMENT		8					_	
Fee	in the former	-	Name	Plan	N Progr.	Balach					
	the land second	-	TAUTOI	1	117	- theorem					
			Intertier	10	10	Open					
				120		Second Second					
File1	Vame					Instrument > PC					
(in)			-			Databa					
1.000	propulsion in the	1.1.	10								
-											

□ Cable line-up

Off-Air Antenna Feed

Mode Cha	A		La communita		I man a	1	Law	Inc I	
V98 18 V98 24 V98 24 V98 31 V98 31 V98 36 V98 40 V98 43 V98 44	 Prog_604cj 487.00 553.00 557.00 557.00 567.00 665.00 617.00 623.00 647.00 653.00 	7394 81/58 81/58 81/58 81/58 81/58 81/58 81/58 81/58 81/58 81/58 81/58 81/58	Auder/S.P.B.W. 0000 M5/s 0000 M5/s	LobPel	DSEqC	Lec.Oue	Name 18 24 23 33 33 36 33 38 40 43 44	Ta Casod Dudot Dudot Dudot Dudot Dudot Dudot Dudot Dudot Dudot Dudot Dudot Dudot	MML PLUM page Name Juli (151) Namber 19 Country Sale (150) Namber 10 Country Sale (150) Sale (150) 10 Country Sale (150) Sale (150) Sale (1
Find in 🕅 Admicer	- NSTR Na PAUTO	UMENT FILE M Ne 1 110 1	ANAGERI	Rebei Open Instrument	, R				

